top of page

INNOTERE 3D Scaffold

Contact

INNOTERE GmbH

Phone: +49 351 2599 9410

Fax: +49 351 2599 9429

Mail: order[at]innotere.de

Nachricht erfolgreich versendet!

INNOTERE 3D Scaffold is a synthetic, porous, biocompatible, osteoconductive and bioresorbable bone substitute material for use in human and veterinary orthopedic surgery. It can be applied for filling or reconstructing of non-load-bearing bone defects or for filling of bone defects, which are sufficiently stabilized by appropriate means. The exceptional properties of INNOTERE 3D Scaffold result from a new 3D-printing technique using INNOTERE's innovative calcium phosphate bone cement paste and low temperature processing.

 

The main features of INNOTERE 3D Scaffold are:

  • defined and interconnected open porosity

  • manufactured from full-synthetic raw materials

  • main crystal phase is bone-like, nanocrystalline hydroxyapatite

  • resorbable by bone remodeling processes

 

The particular application areas of INNOTERE 3D Scaffold are:

  • metaphyseal defect fractures, e.g. fractures of the tibia, radius and humerus

  • osteotomy

  • bone defects after removal or replacement of osteosynthesis implants

Order Details

Bone substitute block

g4781-1.png
Quader.jpg

Bone substitute cylinder

g4943-1.png
zylinder.jpg

Bone substitute wedge

g6936-1.png

​All product variants also available as DEMO packages (unsterile).

Keile.jpg

Featured Publications

  • Alveolar ridge augmentation with 3D-printed synthetic bone blocks: A clinical case series. Perez A, Lazzarotto B, Marger L, Durual S. Clinical Case Reports 2023

  • Effectiveness of xenogeneic and synthetic bone-block substitute materials with/without recombinant human bone morphogenetic protein-2: A preclinical study using a rabbit calvarium model. Lim HC, Paeng KW, Jung UW, Benic GI. Journal of Clinical Periodontology 2021

  • Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog. Sawada K, Nakahara K, Haga-Tsujimura M, Iizuka T, Fujioka-Kobayashi M, Igarashi K, Saulacic N. Odontology 2018

  • Strontium(II) and Mechanical Loading Additively Augment Bone Formation in Calcium Phosphate Scaffolds. Reitmaier S, Kovtun A, Schuelke J,  Kanter B, Lemm M, Hoess A, Heinemann S, Nies B, Ignatius A. Journal of Orthopaedic Research 2017

  • Large Bone Vertical Augmentation Using a Three-Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible. Carrel JP, Wiskott A, Scherrer S, Durual S. Clinical Implant Dentistry and Related Research 2016

  • Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoinductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation. Moussa M, Carrel JP, Scherrer S, Cattani-Lorente M, Wiskott A, Durual S. Materials 2015

  • A 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation. Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S. Clinical Oral Implants Research 2014

bottom of page