3D Printing

Contact

INNOTERE GmbH

Phone: +49 351 2599 9410

Fax: +49 351 2599 9429

Mail: research[at]innotere.de

By using INNOTERE's bone cement paste technology, one of our main R&D topics is the design and 3D printing of scaffolds with a large variety of shapes. The 3D printing technology and unique paste properties allow to precisely customize the dimensions and porosity of the final products. Due to low temperature setting the final material mainly consists of nanocrystalline, calcium deficient hydroxyapatite comparable to the mineral phase of bone.

Based on our innovative 3D printing technology we are able to produce samples and scaffolds with a large variety of adjustable features:

 

  • material based on synthetic calcium phosphate phases

  • degradable and resorbable by cellular activity

  • two- or three-dimensional design

  • individual shapes (cubic, cylindrical, freeforms, etc.)

  • equidistant or anisotropic strand arrangement

  • variable strand diameter from 0.25mm to 1mm

  • variable interconnecting porosity (isotropic or anisotropic)

  • optional sterile packaging and gamma irradiation

Typical applications of our 3D printed scaffolds are:

  • reference samples (chemically and structurally defined, ideal for quantification and microscopy)

  • scaffolds for cell culture and perfusion systems (2D, 3D), perfectly fitting in standard tissue culture well plates

  • substrates for coatings, chemical modification, surface modification

  • filtration devices

  • simple 2D constructs for biochemical pre-studies to complex scaffolds for in vivo studies

  • adaptable workflows from prototype to pilot-plant scale

Featured Publications

  • 3D Bioprinting of Osteochondral Tissue Substitutes – In Vitro Chondrogenesis in Multi-Layered Mineralized Constructs. Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. Scientific Reports 2020

  • 3D Printing of Bone Grafts for Cleft Alveolar Osteoplasty – In vivo Evaluation in a Preclinical Model. Korn P, Ahlfeld T, Lahmeyer F, Kilian D, Sembdner P, Stelzer R, Pradel W, Franke A, Rauner M, Range U, Stadlinger B, Lode A, Lauer G, Gelinsky M. Frontiers in Bioengineering and Biotechnology 2020

  • A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs. Ahlfeld T, Cubo-Mateo N, Cometta S, Guduric V, Vater C, Bernhardt A, Akkineni AR, Lode A, Gelinsky M. ACS Applied Materials & Interfaces 2020

  • Calcium Phosphate Bone Graft Substitutes with High Mechanical Load Capacity and High Degree of Interconnecting Porosity. Hettich G, Schierjott RA, Epple M, Gbureck U, Heinemann S, Mozaffari-Jovein H, Grupp TM. Materials 2019

  • Development and Characterization of Composites Consisting of Calcium Phosphate Cements and Mesoporous Bioactive Glass for Extrusion-Based Fabrication. Richter RF, Ahlfeld T, Gelinsky M, Lode A. Materials 2019

  • 3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo. Ahlfeld T, Schuster FP, Förster Y, Quade M, Akkineni AR, Rentsch C, Rammelt S, Gelinsky M, Lode A. Advanced Healthcare Materials 2019

  • Evaluation of Bone Sialoprotein Coating of Three-Dimensional Printed Calcium Phosphate Scaffolds in a Calvarial Defect Model in Mice. Baranowski A, Klein A, Ritz U, Götz H, Mattyasovszky SG, Rommens PM, Hofmann A. Materials 2018

  • A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds. Ahlfeld T, Köhler T, Czichy C, Lode A, Gelinsky M. Gels 2018

  • Bioprinting of Mineralized Constructs Utilizing Multichannel Plotting of a Self-Setting Calcium Phosphate Cement and a Cell-Laden Bioink. Ahlfeld T, Doberenz F, Kilian D, Vater C, Korn P, Lauer G, Lode A, Gelinsky M. Biofabrication 2018

  • Endosteal and Perivascular Subniches in a 3D Bone Marrow Model for Multiple Myeloma. Braham MVJ, Ahlfeld T, Akkineni AR, Minnema MC, Dhert WJA, Öner FC, Robin C, Lode A, Gelinsky M, Alblas J. Tissue Engineering Part C: Methods 2018

  • Effect of Bone Sialoprotein Coated Three-Dimensional Printed Calcium Phosphate Scaffolds on Primary Human Osteoblasts. Klein A, Baranowski A, Ritz U, Götz H, Heinemann S, Mattyasovszky S, Rommens PM, Hofmann A. Journal Biomedical Materials Research Part B 2018

  • Strontium(II) and Mechanical Loading Additively Augment Bone Formation in Calcium Phosphate Scaffolds. Reitmaier S, Kovtun A, Schuelke J,  Kanter B, Lemm M, Hoess A, Heinemann S, Nies B, Ignatius A. Journal of Orthopaedic Research 2017

  • In Situ Functionalization of Scaffolds During Extrusion-Based 3D Plotting Using a Piezoelectric Nanoliter Pipette. Giron S, Lode A, Gelinsky M. Journal of 3D Printing in Medicine 2016

  • Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel. Ahlfeld T, Akkineni AR, Förster Y, Köhler T, Knaack S, Gelinsky M, Lode A. Annals of Biomedical Engineering 2016

  • 3D Plotting of Growth Factor Loaded Calcium Phosphate Cement Scaffolds. Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M. Acta Biomaterialia 2015

  • Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoinductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation. Moussa M, Carrel JP, Scherrer S, Cattani-Lorente M, Wiskott A, Durual S. Materials 2015

  • A 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation. Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S. Clinical Oral Implants Research 2014

  • Fabrication of Porous Scaffolds by Three-Dimensional Plotting of a Pasty Calcium Phosphate Bone Cement Under Mild Conditions. Lode A, Meissner K, Luo Y, Sonntag F, Glorius S, Nies B, Vater C, Despang F, Hanke T, Gelinsky M. Journal of Tissue Engineering and Regenerative Medicine 2014

  • Well-Ordered Biphasic Calcium Phosphate–Alginate Scaffolds Fabricated by Multi-Channel 3D Plotting Under Mild Conditions. Lou Y, Lode A, Sonntag F, Nies B, Gelinsky M. Journal of Materials Chemistry B 2013

Imprint | Privacy Policy | Contact

© 2020 INNOTERE GmbH

We are certified to

DIN EN ISO 13485

TR-Testmark_0000053454_EN_CMYK_with-QR-C